Ubiquitin-Specific Protease 5 Is Required for the Efficient Repair of DNA Double-Strand Breaks
نویسندگان
چکیده
During the DNA damage response (DDR), ubiquitination plays an important role in the recruitment and regulation of repair proteins. However, little is known about elimination of the ubiquitination signal after repair is completed. Here we show that the ubiquitin-specific protease 5 (USP5), a deubiquitinating enzyme, is involved in the elimination of the ubiquitin signal from damaged sites and is required for efficient DNA double-strand break (DSB) repair. Depletion of USP5 sensitizes cells to DNA damaging agents, produces DSBs, causes delayed disappearance of γH2AX foci after Bleocin treatment, and influences DSB repair efficiency in the homologous recombination pathway but not in the non-homologous end joining pathway. USP5 co-localizes to DSBs induced by laser micro-irradiation in a RAD18-dependent manner. Importantly, polyubiquitin chains at sites of DNA damage remained for longer periods in USP5-depleted cells. Our results show that disassembly of polyubiquitin chains by USP5 at sites of damage is important for efficient DSB repair.
منابع مشابه
Residual DNA double strand breaks correlates with excess acute toxicity from radiotherapy
Introduction: A high risk for development of severe side effects after radiotherapy may be correlated with high cellular radiosensitivity. To enhance radiation therapy efficiency a fast and reliable in-vitro test is desirable to identify radiosensitive patients. The aim of present study was to identify the mechanism of radiation induced DNA double-strand breaks (DSBs) and DSB r...
متن کاملThe Role of Long Non Coding RNAs in the Repair of DNA Double Strand Breaks
DNA double strand breaks (DSBs) are abrasions caused in both strands of the DNA duplex following exposure to both exogenous and endogenous conditions. Such abrasions have deleterious effect in cells leading to genome rearrangements and cell death. A number of repair systems including homologous recombination (HR) and non-homologous end-joining (NHEJ) have been evolved to minimize the fatal effe...
متن کاملThe ubiquitin specific protease USP34 promotes ubiquitin signaling at DNA double-strand breaks
Ubiquitylation plays key roles in DNA damage signal transduction. The current model envisions that lysine63-linked ubiquitin chains, via the concerted action of E3 ubiquitin ligases RNF8-RNF168, are built at DNA double-strand breaks (DSBs) to effectively assemble DNA damage-repair factors for proper checkpoint control and DNA repair. We found that RNF168 is a short-lived protein that is stabili...
متن کاملMERIT40 controls BRCA1-Rap80 complex integrity and recruitment to DNA double-strand breaks.
Rap80 targets the breast cancer suppressor protein BRCA1 along with Abraxas and the BRCC36 deubiquitinating enzyme (DUB) to polyubiquitin structures at DNA double-strand breaks (DSBs). These DSB targeting events are essential for BRCA1-dependent DNA damage response-induced checkpoint and repair functions. Here, we identify MERIT40 (Mediator of Rap80 Interactions and Targeting 40 kD)/(C19orf62) ...
متن کاملSimulation of strand breaks induced in DNA molecule by radiation of proton and Secondary particles using Geant4 code
Radiotherapy using various beams is one of the methods for treating cancer, Hadrons used to treat cancers that are near critical organs. The most important part of the cell that is damage by ionizing radiation is DNA. In this study, damages induced in the genetic material of living cells (DNA) defined by the atomic model from the protein data bank (PDB) have been studied by radiati...
متن کامل